

Why are systematic reviews important for good science and the 3Rs?

Emily Sena, PhD University of Edinburgh

Why do we do meta-analysis of animal studies?

- Animal models are generally performed to inform human health but when should you be convinced to move to the next step?
- Systematic reviews & meta-analyses:
 - assess the quality and range of evidence
 - identify gaps in the field
 - quantify relative utility of outcome measures
 - inform power/sample size calculations
 - assess for publication bias
 - try to explain discrepancies between preclinical and clinical trial results
 - inform clinical trial design

Data from in vivo studies

- There are huge amounts of often confusing data
- Systematic review can help to make sense of it
- If you select extreme bits of the evidence you can "prove" either harm or substantial benefit
- Investigating the sources behind this variation may be helpful in translation

Hypothermia: a systematic search identified 222 experiments in 3353 animals

Van der Worp et al Brain 2007

Good science

- Examples from different reviews describing
 - Knowing what has been done already
 - Confidence in the cause-effect relationship
 - Generalisability of findings
 - Presence & impact of publication bias

What has been done already?

Chemotherapy-induced peripheral neuropathy publications

Chemotherapy drug used to induce model	Number of publications (/176)		
Paclitaxel	67		
Vincristine	61		
Oxaliplatin	38		
Cisplatin	25		
Bortezomib	5		
Docetaxel	2		

- confidence in in cause-effect

Chemotherapy-induced peripheral neuropathy publications

	%	No. of publications /Total
Blinded Assessment of Outcome	46	80/176
Allocation concealment	0	0
Randomisation - Drug	18	25/125
Animal Welfare Regulations	92	163/176
Potential Conflicts of Interest	28	50/176
Animal exclusions	9	15/176
Sample Size Calculation	2	3/176

Impact of study characteristics - generalisability

Mechanical-induced pain-related behaviour

	Early					Late	
	Gestation		idge	idgestation		tation	
	WR	SDR	R	SDR	WR	SDR	
Vasodilator							
Gq _{EC}	•	٠	•	=	=	\uparrow	
Flow-mediated vasodilation	•	٠	\uparrow	•	\uparrow	\uparrow	
Vascular compliance	•	\uparrow	=	\uparrow	=	\uparrow	
Gs _{smc}	•	٠	\uparrow	•	\downarrow	\uparrow	
Vasoconstrictor							
Gq _{SMC}	•	٠	=	=	=	\downarrow	
Myogenic reactivity	٠	=	=	=	=	$?^{:}$	

Pregnancy-induced vascular function: increase (\uparrow), decrease (\downarrow), no change (=), inconsistent effects (?), and no effects reported (•).

Van Drongelen et al. 2012 – vascular function during pregnancy

The umbrella of reporting bias

Not all outcomes and a priori analyses are reported

- Publication bias
 - Neutral and <u>negative</u> studies
 - Time lag/remain unpublished
 - Less likely to be identified
- Selective analysis reporting
- Selective outcome reporting

Is the File-Drawer Infested With Mice?

How to assess for publication bias?

- To assess for its presence
 - Funnel plot/Egger regression
- Estimate efficacy in the absence of publication bias
 - Trim and Fill

CAMARADES: Bringing evidence to translational medicine

NIV

- Examples describing
 - Assess whether less noxious tests are as predictive as more severe alternatives
 - Robust sample size calculations
 - Assess whether multiple tests are necessary
 - Refine duration of experiments

Indicative Power Calculations

Mechanical induced outcomes

Behavioural Test	No. of experiments	Median N	Calculated power	Median Effect Size (IQRs)	Calculated sample size (power=0.8)
von Frey (electronic)	48	9	0.3	1.3 (0.9-1.8)	11
von Frey (filaments)	369	11	0.5	1.5 (0.8-2.4)	9
Pin prick	12	11	0.6	1.6 (0.3-8.3)	8
Randall-Selitto paw pressure	156	10	0.8	1.9 (1.0-3.8)	6

Separation-induced anxiety - multiple testing?

202

L. Groenink et al. / European Journal of Pharmacology 753 (2015) 191-208

Table 5

Subgroup statistics for total number of vocalizations.

Subgroup	# Articles	# Experiments	# Animals	SMD[CI]
Repeated testing <i>Test for subgroup differences</i> $P < 0.00001$				
Once	3	9	233	-1.16 [-1.61, -0.70]
2-3 times	3	5	102	-2.41 [-3.32, -1.50]
4 or more times	6	24	540	-2.35 [-2.88, -1.81]
Not reported	3	5	102	- 1.63 [- 2.34, -0.92]

NA not applicable; NS not significant; # number; SMD standardized mean difference; CI confidence interval; Subgroups consisting of less than three experiments and/or less than three articles were excluded from between subgroup analyses.

Anti-emetic research - refine duration of experiments

- Ondansetron protects 50% of the patients treated with Cisplatin
- Ondansetron reduced the number of animal developing emesis
- Efficacy was dependent on dosage and duration of the observation period
- Supporting evidence to improve the model
- Provides evidence supporting refinement of the model (4h instead of 24h)

Percie du Sert N et al (2011) Cancer Chemother Pharmacol 67(3): 667-686.

- Why systematic reviews are important for......
 - Good Science
 - Knowing what has been done already
 - Confidence in the cause-effect relationship
 - Generalisability of findings
 - Presence & impact of publication bias
 - 3Rs
 - Assess whether less noxious tests are as predictive as more severe alternatives
 - Robust sample size calculations
 - Assess whether multiple tests are necessary
 - Refine duration of experiments

Thanks to.....

- Edinburgh
 - Gillian Currie, Malcolm Macleod, Robert
 Stewart, Nicki Sherratt, Zsanett Bahor, Maia
 Lyall, Sarah McCann & Lesley Colvin
- Imperial
 - Andrew Rice, Rosie Moreland, Rachel Wodarski, Anna Reidinger, Helena Angel-Scott, Ran Xiong, Maha Khan, Taufiq Khan & Tamara Yu
- Nathalie Percie du Sert
- Kim Wever
- EuroPain WP2
 - Camilla Ultenius, Ian Machin, Isabel Lefevre, Kelly Knopp, Kris Rutten, Martyn Jones, Nick Andrews, Sabrina Schaefer, Ombretta Caspani, Cathrine Baastrup & Ada Delaney

National Centre for the Replacement Refinement & Reduction of Animals in Research

